Hepatic Extracellular Signal–Regulated Kinase 2 Suppresses Endoplasmic Reticulum Stress and Protects From Oxidative Stress and Endothelial Dysfunction

نویسندگان

  • Takehiko Kujiraoka
  • Yasushi Satoh
  • Makoto Ayaori
  • Yasunaga Shiraishi
  • Yuko Arai‐Nakaya
  • Daihiko Hakuno
  • Hirotaka Yada
  • Naruo Kuwada
  • Shogo Endo
  • Kikuo Isoda
  • Takeshi Adachi
چکیده

BACKGROUND Insulin signaling comprises 2 major cascades: the insulin receptor substrate/phosphatidylinositol 3'-kinase/protein kinase B and Ras/Raf/mitogen-activated protein kinase/kinase/ERK pathways. While many studies on the tissue-specific effects of the insulin receptor substrate/phosphatidylinositol 3' -kinase/protein kinase B pathway have been conducted, the role of the other cascade in tissue-specific insulin resistance has not been investigated. High glucose/fatty acid toxicity, inflammation, and oxidative stress, all of which are associated with insulin resistance, can activate ERK. The liver plays a central role in metabolism, and hepatosteatosis is associated with vascular diseases. The aim of study was to elucidate the role of hepatic ERK2 in hepatosteatosis, metabolic remodeling, and endothelial dysfunction. METHODS AND RESULTS We created liver-specific ERK2 knockout mice and fed them with a high-fat/high-sucrose diet for 20 weeks. The high-fat/high-sucrose diet-fed liver-specific ERK2 knockout mice exhibited a marked deterioration in hepatosteatosis and metabolic remodeling represented by impairment of glucose tolerance and decreased insulin sensitivity without changes in body weight, blood pressure, and serum cholesterol/triglyceride levels. In the mice, endoplasmic reticulum stress was induced together with decreased mRNA and protein expressions of hepatic sarco/endoplasmic reticulum Ca(2+)-ATPase 2. In a hepatoma cell line, inhibition of ERK activation- induced endoplasmic reticulum stress only in the presence of palmitate. Vascular reactive oxygen species were elevated with upregulation of nicotinamide adenine dinucleotide phosphate oxidase1 (Nox1) and Nox4 and decreased phosphorylation of endothelial nitric oxide synthase, which resulted in the remarkable endothelial dysfunction in high-fat/high-sucrose diet-fed liver-specific ERK2 knockout mice. CONCLUSIONS Hepatic ERK2 suppresses endoplasmic reticulum stress and hepatosteatosis in vivo, which results in protection from vascular oxidative stress and endothelial dysfunction. These findings demonstrate a novel role of hepatic ERK2 in obese-induced insulin resistance in the protection from hepatovascular metabolic remodeling and vascular diseases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of endoplasmic reticulum (ER) stress inducer thapsigargin on the expression of extracellular-superoxide dismutase in mouse 3T3-L1 adipocytes

Endoplasmic reticulum stress is related to metabolic disorders, including atherosclerosis and type 2 diabetes. It is known that inflammatory adipocytokines and oxidative stress are increased, while anti-inflammatory adipocytokines such as adiponectin are decreased in adipocytes during above conditions. Extracellular-superoxide dismutase is an anti-inflammatory enzyme that protects cells from ox...

متن کامل

Zanthoxylum Alatum Attenuates Chronic Restraint Stress Adverse Behavioral Effects Via the Mitigation of Oxidative Stress and Modulating the Expression of Genes Involved in Endoplasmic Reticulum Stress in Mice

Introduction: The functions of the endoplasmic reticulum (ER) are important, particularly in the proteins’ synthesis, folding, modification, and transport. Based on traditional medicine and our previous studies on Zanthoxylum alatum in lipopolysaccharide-induced depressive behavior and scopolamine-induced impaired memory, the present study explored the role of hydroalcoholic extract of Z. alatu...

متن کامل

Metformin protects endothelial function in diet-induced obese mice by inhibition of endoplasmic reticulum stress through 5' adenosine monophosphate-activated protein kinase-peroxisome proliferator-activated receptor δ pathway.

OBJECTIVE 5' Adenosine monophosphate-activated protein kinase (AMPK) interacts with peroxisome proliferator-activated receptor δ (PPARδ) to induce gene expression synergistically, whereas the activation of AMPK inhibits endoplasmic reticulum (ER) stress. Whether the vascular benefits of antidiabetic drug metformin (AMPK activator) in diabetes mellitus and obesity is mediated by PPARδ remains un...

متن کامل

Protective role of Gipie, a Girdin family protein, in endoplasmic reticulum stress responses in endothelial cells

Continued exposure of endothelial cells to mechanical/shear stress elicits the unfolded protein response (UPR), which enhances intracellular homeostasis and protect cells against the accumulation of improperly folded proteins. Cells commit to apoptosis when subjected to continuous and high endoplasmic reticulum (ER) stress unless homeostasis is maintained. It is unknown how endothelial cells di...

متن کامل

Inhibition of Store-Operated Calcium Entry Protects Endothelial Progenitor Cells from H2O2-Induced Apoptosis

Store-operated calcium entry (SOCE), a major mode of extracellular calcium entry, plays roles in a variety of cell activities. Accumulating evidence indicates that the intracellular calcium ion concentration and calcium signaling are critical for the responses induced by oxidative stress. The present study was designed to investigate the potential effect of SOCE inhibition on H2O2-induced apopt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2013